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We analyze the Zakharov-Shabat-type inverse problem when the reflection 
coefficient contains poles in the eigenvalue plane, as an extension of the earlier 
work by Atkinson in the case of the Schrrdinger problem. It is demonstrated 
that due to the mutual influence of such a pole and the usual bound-state pole, 
a discontinuous solitary wave profile is generated. Furthermore, we also exam- 
ine the form of the nonlinear field only due to the pole of the reflection 
coefficient. A different approach is necessary to convert the GLM equation into 
a purely differential one for its solution. 

1. INTRODUCTION 

The inverse scattering transform (IST) is one of the best approaches 
for the solution of nonlinear integrable systems. Of late various other 
methodologies have also been suggested, but the flexibility of IST is 
perhaps the best. In recent years some authors have examined the inverse 
problem for the Schrrdinger equation (Levi and Ragnisco, 1985; Pechenick 
and Cohen, 1981) when the refledtion coefficient R(K) contains poles in the 
complex eigenvalue plane (Lamb, 1980). It may be mentioned that the 
corresponding Gelfand-Levitan equation requires a different procedure 
for its solution. For the case of the KdV equation such a problem has 
been analyzed by Atkinson (1988). In this communication we study the 
Zakharov-Shabat-type inverse problem, when the reflection coefficient has 
a pole in the eigenvalue plane. Two cases are investigated--one in the 
presence of the usual bound-state pole, the other when it is absent. In the 
first case we observe that the soliton-like profile is generated with a 
discontinuity, while in the latter case no soliton solution can be seen. 
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2. FORMULATION 

The Zakharov-Shabat  (1971)-type eigenvalue problem is written as 
(Ablowitz et al., 1974) (i: 
where (q, r) are the nonlinear field variables and �9 is a two-component 
linear eigenfunction, �9 = (~1, ~2)+.  The required inverse scattering for- 
malism is already formulated in Ablowitz et al. (1974), so we adopt their 
notations. We assume the usual asymptotic vanishing condition for q and 
r. Let (~b, 43) and ~,ff? denote the Jost functions for x ~ - m  and 
x ~ + o% respectively. 

Then 

q~ = a(2)@ + b(2)W 
(2) 

(a, b, ti, b) represent the scattering data. The usual analyticity property of 
these are also assumed to hold good. The kernel of the Gelfand-Levitan 
equation is written as 

1 ~ ~  bei,~Xd2_i~CseiZ~ (3) M(x) = ~ o~ a 

The sum over the discrete terms in equation (3) denotes the contribu- 
tion from the bound-state poles, and b/a = R(x) and E/~ =/~(x) are the 
reflection coefficients. We now assume that the reflection coefficients are 
not zero, but each has a pole on the imaginary axis. That is, 

R(2) - rl 
2 -- i/~1 (4) 

r2 
/~(2) - 2 -- ij~2 

Then the contribution from the continuous part in equation (3) can be 
extracted with the help of a contour integral and we get (with the 
assumption of a single bound-state pole) 

M+ (x) = -~le-alx0(]~i) + yle -'~1~'] 

M_(x) ~le"XO(--t~l) "1-~1 e-alx ~'] (5) 

)Fl + (x) = -~2e-"2x0([32) + 72e-~:~ 

~ _  (x) ~2e'2XO(-32) + ~2e-~2~ ~'.j (6) 
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where 

M = M+ (x)O(x) + M _  (x)O( - x) "] 

)91 eVI+ (x)O(x) + M (x)O(-x)  ~ ] (7) 

where ~i, fli, Yi, and 6 i a r e  arbitrary constants to be specified later. 
Since the general situation is extremely complicated, we concentrate on 

a special case, but retaining the salient features. The two functions K(x, y) 
and K'(x, y) which solve the inverse problem for q and r are solutions of the 
following two integral equations (Ablowitz, 1978): 

;; K(x, y) -- l~f(x + y) -- dz I~(x, z)ff1(z + y) = 0 (8) 

(lo) f; K(x, y) + M(x  + y) + dz K(x, z)M(z + y) = 0 (9) 

Since the kernels M a n d / Q  have different structures for x > 0 and x < 0, 
we are to subdivide the range [x, oc] accordingly. Lastly we mention that q 
and r are reproduced through 

q(x) = -- 2K1 (x, x) 
(10) 

r (x )  = - 2 9 2 ( x ,  x )  

In the following we show how K1 and K2 can be obtained explicitly with M 
and M given in equations (5) and (6). 

3. METHOD OF SOLUTION 

Let us start by choosing the three regions [x > 0 ; x + y  >0],  
[x < 0, x + y > 0], and Ix < 0, x + y < 0] separately. Also set 

K = P }  
K.=/5  when x > 0, x + y > 0  

K = Q } _  w h e n x < 0 ,  x + y > O  (11) 
, K  

Then the GLM equations (6) and (9) break up into the following set of 
coupled integral equations: 

Co) f; P(x, y) - 1~I + (x + y) -- dz P(x, z)k~r+ (z + y) = 0 (12) 
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Q(x, y) - 1171+ (x + y) - dz Q(x, z)~l + (z + y) 
x 

- dz T(x,z)M+(z +y) = 0  (13) 

(1)_ ;_o 
T(x, y) -- 0 M_(x + y) - dz Q(x, z)ffl + (z + y) 

x 

f ~ ;  fx -y 
-- d z T ( x , z ) f f l + ( z + y ) -  dzT(x , z )M ( z + y ) = O  (14) 

.2ong with the following for P, Q, and T: 

(0) f; P(x,y) + M+(x +y) + &P(x , z )M+(z  +y) = 0  (15) 

(~ ; Q(x, y) + M+ (x + y) + dz Q(x, z)M + (z + y) 
x fx -x 

+ dz T(x, z)M+ (z + y) = 0 (16) 

( O ) M - ( x + Y ) + f _ ~ d z Q ( x , z ) M + ( z + Y )  
i~(x, y) + 1 x 

f_x +;y + dzT(x , z )M+(z+y)  d z T ( x , z ) M _ ( z + y ) = O  (17) 
--y 

whence the  expression for q and v can be written as 

q(x) = - 2[P1 (x, x)O(x) + T, (x, x)O( - x)] (18) 

r(x) = 2[P2(x, x)O(x) + T2(x, x)O(- x)] (19) 

In the above we have always used the notation that each of P, Q, and T is 
a two component vector written as (P1, P2)', (Q1, Q2)/, (Zl,  T2) t, etc. So 
each of the above equations (14)-(16) breaks up into two coupled equa- 
tions for their component functions. To avoid the clumsy nature of the 
final expression, we set 

~1 = ]~1 = 61 > 0 ;  0~2=fl2=62 > 0  

It may be noted that equation (12) for P can be solved in the usual manner 
and we get 

P1 (x, x) = 1 + [(Yl -- al)(Y2 -- a2)/(0q + 0~2)2] e2(al + "2)x (20) 

However, for the equations for T1 we note that the y dependence is not as 
in the usual GLM equation, because of the finite limits occurring in the 
integrals. So we set Tl(x, y) = q(x, y)e -~2y and Tl(x, y) = Fl(x, y)e -'~y. 
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Such equations upon differentiation yield 

1 
(x,  - y )  = - - -  e -(~' + ~2)Yt~ (x, y )  

~2 (21) 

t~ (x, --y) = 1  e-(~1 + ~2)yT] (x, y) 

Again changing y to - y  and differentiating, we obtain 

t] (x, - y )  = ~2e-(~ + ~2)y~ (x, y) 
(22) 

t:{ (x,  - y )  = - =x e -(~' + =2)Yt, (x,  y)  

Using these relations, we arrive at a second-order differential equation 

t" (x, y) - (~x 1 + ~2)t~ (x,  y )  - ~l o~2ti(xy) = 0 (23) 

for i = 1, 2, whence we get 

tl (x,  y )  = [A(x)e  ny + B ( x ) e  -"Y]e t(=l + =2)/=lr 
(24) 

n = �89 + =2) 2 + 4~=2] 1/2 

Similarly, 

tl (x,  y )  = [.~(x)e "y + B(x)e-~Y]e  E(~' + ~2)/21y (25) 

To determine A, ,~ and B,  B we set Q ~ ( x , y ) = q l ( x ) e  - '2y  and 
Q ~ ( x , y )  = gl~(x)e - ' l y ,  to get a set of coupled linear equations for these 
which can be easily solved. Finally we obtain, 

- q ( x )  = 2[P 1 (x,  x)O(x) + T1 (x, x ) O ( - x ) ]  (26) 

with PI given in equation (24), 2"1 in (25), along with 

Cl b2 -- C2b1 
A ( x )  = 

al b2 - a2bl 
(27) 

Cl a2 -- C2a 1 
a ( x )  = 

bla2 - b2al 
where 

o, __ p ,  ( : , . _  e-. ,x)- e',q 
Lnl n2 _] 

s I-. -.,x)] ai Ln~(~, + =~) - e"'X) - n, ~'n2 ( e " l x "  e 

(~ + ~2) 

a~ = 1 + 0'1 - ~1)(72 - ~2) e2(~l + ~2)x 
(~l + ~)2 

(28) 
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Similar expressions hold good for other coefficients b~, C1, C2, b2 ,  etc. We 
do not reproduce these here, because they do not convey any physical 
information. We plot the expression (26) numerically. We have used three 
sets of values for the parameters occurring in the expression (26). These are 
~1=1.5, ~2=1.5, y1=0.25, 7z=0.75; ~1=1.5, ~2=1.5, 71=0.75, 
72 = 0.25; and 7~ = 1.0, 72 = 1.0 with ~1, ~2 as before. 

4. DISCUSSION 

It is interesting to observe that in the first case when we include the 
bound-state pole, we reproduce a solitary wave-like profile with a disconti- 
nuity on the ordinate. Two such cases have been reproduced in Figs. 1-3. 
On the other hand, when we exclude the bound-state pole, the profile of the 
generated wave looks like the objects shown in Fig. 4. This particular form 
is in no way related to the solitary wave solution. Of course there are 
nonlinear equations where nonreflectionless solitons are known to occur. 
The whole process of calculation can be adopted even for the N-soliton 
case with m number of poles of R(2). But the computation will be terribly 
complicated. 

I 

, '\'\ 
N 

�9 i "N 

q ( x )  

Fig. 1. P lo t  o f  q(x) versus x in the presence of  bound-s t a t e  pole. (I)  ~l = 1.5, ~2 = 1.5, 

71 = 0 . 2 5 ,  7 2 = 0 . 7 5 ,  ( I I )  ~1 = 1.5, ~2 = 1.5, 71 = 0 . 7 5 ,  ~,2=0.25, ( I I I )  ~1 = 1.5, ct 2 = 1.5, 

Yl = 1.0, Y2 = 1.0. 
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q(x) 

I I  

Fig .  2. P l o t  o f  q(x) v e r s u s  x in  t he  a b s e n c e  o f  b o u n d - s t a t e  pole .  ( I )  cq = 1.5, ct 2 = 1.5, 7, = 0, 

V2 = 0.75,  ( I I )  ct 1 = 1.5, ct 2 = 1.5, Vl = 0 .25,  )'2 = 0, ( I I I )  ~i = 1.5, ct 2 = 1.5, )'1 = 0, 72 = 0. 

Fig. 3. 
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q (x )  

Plo t  o f  q(x) v e r s u s  x in t he  p r e s e n c e  o f  b o u n d - s t a t e  pole .  ( I )  ~ = 1, ct 2 = 2, 71 = 0.5,  

V2 = 1.5, ( I I )  cq = 2, ~2 = 1, Yl = 1.5, 3'2 = 0.5. 
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Fig. 4. 
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Plot of q(x) versus x in the absence of bound-state pole. (I) aq = 1, ct 2 = 2, )'1 = 0.5, 
)'2 = 0, (II) ct I = 2, ~ = 1, )'l = 1.5, )'2 = 0. 
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